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ABSTRACT

Hamill et al. described a multimodel ensemble precipitation postprocessing algorithm that is used opera-

tionally by the U.S. National Weather Service (NWS). This article describes further changes that produce

improved, reliable, and skillful probabilistic quantitative precipitation forecasts (PQPFs) for single or mul-

timodel prediction systems. For multimodel systems, final probabilities are produced through the linear

combination of PQPFs from the constituent models. The new methodology is applied to each prediction

system. Prior to adjustment of the forecasts, parametric cumulative distribution functions (CDFs) of model

and analyzed climatologies are generated using the previous 60 days’ forecasts and analyses and supplemental

locations. The CDFs, which can be stored with minimal disk space, are then used for quantile mapping to

correct state-dependent bias for each member. In this stage, the ensemble is also enlarged using a stencil of

forecast values from the 5 3 5 surrounding grid points. Different weights and dressing distributions are

assigned to the sorted, quantile-mapped members, with generally larger weights for outlying members and

broader dressing distributions formembers with heavier precipitation. Probability distributions are generated

from the weighted sum of the dressing distributions. The NWS Global Ensemble Forecast System (GEFS),

the Canadian Meteorological Centre (CMC) global ensemble, and the European Centre for Medium-Range

Weather Forecasts (ECMWF) ensemble forecast data are postprocessed for April–June 2016. Single pre-

diction system postprocessed forecasts are generally reliable and skillful. Multimodel PQPFs are roughly as

skillful as the ECMWF system alone. Postprocessed guidance was generally more skillful than guidance using

the Gamma distribution approach of Scheuerer and Hamill, with coefficients generated from data pooled

across the United States.

1. Introduction

The U.S. National Weather Service (NWS) recently

instituted a program to generate multimodel ensemble

postprocessed guidance for initializing its National Digi-

tal Forecast Database (NDFD; Glahn and Ruth 2003).

The NDFD data provide high-resolution (2.5-km grid

spacing) guidance over the contiguous United States,

Alaska, Hawaii, and Puerto Rico. Its data can be found

on NWS forecast office web pages and underlie the gen-

eration of its worded forecasts. The program to generate

postprocessed guidance to initialize the NDFD is known

as the National Blend of Models, or National Blend. A

recent article by Hamill et al. (2017, hereafter H17) de-

scribed an initial procedure for generation of determin-

istic 6-h quantitative precipitation forecasts (QPFs) and

12-h probability of precipitation (POP) that was made

operational in late 2017 in the National Blend for

medium-range forecasts. Aspects of the H17 post-

processing system that were novel or somewhat novel

included the following:

1) Increasing the training sample size by augmenting the

training data at a given grid point with data from other

grid points with similar terrain and precipitation
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climatology characteristics; this was called the ‘‘sup-

plemental location’’ process.

2) Synthetically enlarging the multimodel ensemble size

and addressing distributional bias by quantile map-

ping the precipitation forecast data from surrounding

grid points, with the surrounding grid point’s fore-

casts quantile mapped to be consistent with the center

point’s analyzed climatology.

3) Adding state-dependent random noise to each mem-

ber to increase the spread, decrease forecast over-

confidence, and improve reliability.

4) Decreasing spatial sampling variability through a

terrain-roughness-dependent Savitzky–Golay smooth-

ing (Press et al. 1992, section 14.8) of the resulting POPs.

Though H17 showed that postprocessed QPF guid-

ance from the combination of Canadian Meteorological

Centre (CMC) and National Centers for Environmental

Prediction (NCEP) Global Ensemble Forecast System

(GEFS) was skillful, and POPs were skillful and also

reliable, there were several reasons to consider further

modifications to the procedure. First, the postprocessing

algorithm of H17 combined information from all po-

tential prediction systems at an early stage of the pro-

cessing, forming a superensemble of quantile-mapped

amounts. Such a procedure, especially applying data-

informed weighting techniques discussed below, would

be challenging if the size of the ensemble varied from

one day to the next as a result of data delays or data

outages. Missing data are more likely to occur when the

system includes predictions from other operational

centers in an NWS production environment with strict

data cutoff times. An alternative to H17 to be evaluated

here is thus whether acceptable results can be obtained

through a two-step postprocessing procedure, where

each prediction system is postprocessed individually,

and then resulting probabilities are linearly combined.

In situations where guidance produced by such pre-

diction systems is relatively independent, a further ad-

justment, such as suggested by Gneiting and Ranjan

(2013), may provide an even better result.

A second deficiency was that the H17 procedure did

not produce probabilistic forecasts for higher pre-

cipitation amount thresholds that were as reliable as the

POP forecasts. A likely cause of the unreliability was

that the artificial noise added to ensemblemembers only

partly addressed the remaining issues of overconfidence

in the enlarged, quantile-mapped ensemble.

To address this, we consider more objectively based al-

gorithms for adjusting the probabilities than the addition of

state-dependent noise in H17. Specifically, we consider

variants on the approach known as ‘‘best-member dress-

ing’’ (Roulston and Smith 2003). In standard dressing

procedures, multiple realizations of noise are added to

each member forecast, with the magnitude of the added

noise consistent with the amount needed to ensure con-

sistency between the ensemble-mean root-mean-square

(RMS) error and the ensemble spread. The resulting

ensemble had larger spread, and probabilities from the

ensemble exhibited skill and improved reliability. An ex-

amination of subsequent literature, most notably Fortin

et al. (2006; hereafter F06), suggested that an ensemble-

weighting procedure may be able to improve upon the

basic Roulston and Smith (2003) algorithm. The un-

derlying concept discussed by F06 is as follows: except in

the case of two ensemble members with the same value,

such as both with zero precipitation, only one ensemble

member will commonly have a value closest to the even-

tual analyzed state. The user will not know which one

beforehand, but given a training dataset of previous cases

of ensemble forecasts and the associated verification, it is

possible to sort the ensemble, increment a counter asso-

ciated with the rank of the closest member, and repeat the

process over many past forecast dates and grid points. The

resultant ‘‘closest-member histogram’’ is very similar to

the rank-histogramconcept discussedbyHamill (2001). The

closest-member histogram statistics provide the necessary

data for an objective reweighting of the sorted ensemble of

forecasts before dressing and determining the probabilities.

For example, perhaps the highest- and lowest-sorted en-

semble members would bemore highly weighted, given the

overconfidence typical in ensemble prediction systems and

the greater probability the analyzed state lies beyond the

range of the ensemble (Hamill and Colucci 1998).

Inspired by F06, this article will examine whether this

reweighting produces forecasts with improved skill and re-

liability relative to the performance benchmark set byH17.

This article will also investigate how skill changes when

European Centre for Medium-Range Weather Forecasts

(ECMWF) ensemble predictions are included in a multi-

model ensemble from GEFS and CMC data. Past studies

such as Hagedorn et al. (2008, 2012), Hamill et al. (2008),

and Hamill (2012) have shown that ECMWF predictions,

after their own postprocessing, set a high benchmark for

skill, one that is hard to surpass even with postprocessed,

multimodel guidance that includes ECMWF. This tenta-

tive conclusion will be reexamined with postprocessing

that incorporates the existing quantile mapping together

with the reweighting procedure suggested by F06.

The remainder of the article is organized as follows.

Section 2 provides a brief description of the datasets and

evaluation methodologies used in this article, which are

mostly the same as in H17. Section 3 describes the mod-

ifications to the postprocessing procedure that will be

evaluated here. Section 4 provides results, and section 5

discusses them and makes recommendations.
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2. Datasets and evaluation methodologies

So that prediction results can be compared as directly

as possible against the results discussed by H17, nearly

the same verification data period is used, namely, fore-

casts initialized at 0000 UTC from 1 April to 30 June

2016. NCEP data were not available on 24, 25, 28, 29,

and 30 June, so these dates were omitted for all systems.

However, when including the training data, data were

downloaded for the period back to 1December 2015. As

will be explained more in section 3, training data are

needed for quantile mapping and for the estimation of

‘‘closest-member histograms.’’ For a date of interest,

data 61–120days prior were used in the development of

closest-member histograms. Data 1–60days prior were

used for the development of cumulative distribution

functions used in the quantile mapping of the forecast

during the verification period.

Precipitation forecast data during this period were

obtained from the NCEP GEFS, the CMC ensemble,

and, in this study, also from the ECMWF ensemble pre-

diction system. These ensembles will be referred to sim-

ply as NCEP, CMC, and ECMWF, respectively. Data

were downloaded from ECMWF’s THORPEX In-

teractive Grand Global Ensemble (TIGGE; Bougeault

et al. 2010; Buizza 2014; Swinbank et al. 2016) data portal.

Twelve-hourly accumulated precipitation forecast data

were downloaded at 1/28 grid spacing on a grid sur-

rounding the contiguous United States (CONUS) and

then bilinearly interpolated to the 1/88 grid of the analyzed
data. Details on the NCEP and CMC ensembles were

provided by H17. Details on the ECMWF ensemble in

2016 and its performance were documented by Haiden

et al. (2016). Given that data were requested from the

TIGGEportal at 1/28 and the ensemble prediction systems

have higher native resolution, the lack of reliability of the

raw ensembles, discussed later, is probably somewhat

exaggerated through use of the degraded-resolution data.

As in H17, climatology-calibrated precipitation anal-

ysis data (Hou et al. 2014) at 1/88 grid spacing and

12-hourly temporal resolution over the CONUS are

used for verification and training.

The evaluation metrics are the same as used by H17.

In particular, Brier skill scores (BSS) and reliability di-

agrams will be the primary methods for diagnosing the

raw and postprocessed guidance quality, calculated us-

ing data across all 1/88 grid points inside the CONUS and

the Columbia River basin of Canada. Confidence in-

tervals for selected tests are provided, as well as whether

the test passed the 5% significance level. The procedure

for developing confidence intervals follows the block

bootstrap algorithm described by Hamill (1999). A case

study will be included that also visually illustrates the

characteristics of the guidance, from raw-model guid-

ance through calibration and combination.

3. Description of the revised postprocessing
procedure

a. Review of the previously used procedure

We start with a brief review of the postprocessing pro-

cedure for probabilistic precipitation forecasts in H17.

Before any postprocessing occurred, for each grid point

in the CONUS and for each month of the year, a set of

‘‘supplemental locations’’ had been determined. These

locations were chosen based on similarity of terrain fea-

tures and precipitation climatology. Aminimum distance

between supplemental locations was enforced so that

training samples would have greater independence.

Forecast and analyzed data at the supplemental locations

were then used to populate the empirical cumulative

distribution functions (CDFs) for precipitation that were

used in the quantile mapping. Postprocessing was then

performed grid point by grid point. First, quantile map-

ping was applied to each ensemble member to make its

forecast more consistent with a draw from the analyzed

precipitation climatology. In this step, the ensemble

forecast was also synthetically enlarged ninefold by

quantile mapping a 3 3 3 stencil of surrounding grid

points’ forecasts using each grid point’s forecast distri-

bution and the center grid point’s analyzed distribution.

Again, see H17 for details and figures that illustrate this

procedure and provide more rationale for its use. The

ninefold enlarged, quantile-mapped ensemble at this grid

point was combined with the ninefold enlarged and

quantile-mapped ensemble members from other pre-

diction systems. A single realization of random Gaussian

noise was added to each member to increase spread, a

simplified form of dressing. The magnitude of this noise

applied to a particular member was linearly related to

that member’s quantile-mapped precipitation amount,

with larger noise associated with larger amount forecasts;

this procedure is admittedly ad hoc, but it was inspired by

previous experiments with precipitation forecast cali-

bration such as Hamill and Colucci (1998), who showed

that precipitation uncertainty tends to be linearly related

toprecipitationamount. Probabilitieswere thendetermined

from the ensemble relative frequency, and as a final step,

the gridded field of probabilities was smoothed using a

Savitzky–Golay smoother.

b. The new postprocessing procedure, with rank
weighting of sorted members

The major changes incorporated into the revised al-

gorithm are now described, first at a high level and then
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followed by a detailed description with equations and

figures as needed. The changes include the following:

1) Postprocessing is applied separately to guidance

from each prediction system.

2) CDFs for the forecast and analyzed distributions used

in the quantile mapping are now estimated with a

‘‘fraction zero’’ and Gamma distributions (Wilks

2011) for positive amounts instead of empirical distri-

butions. This revised approach radically shrinks the

amount of training data information that needs to be

stored prior to generation of the postprocessed guid-

ance, and the algorithm runs more quickly. There is

also a new adjustment to the quantile-mapping pro-

cedure to constrain the extent of forecast adjustment

for precipitation amounts that are large relative to

the gridpoint’s climatological mean, presuming in

such circumstances the quantile-mapping estimates

are subject to larger sampling errors.

3) As the postprocessing for a particular ensemble system

proceeds grid point by grid point, the previous synthetic

ensemble enlargement and quantile mapping using a

3 3 3 stencil of surrounding grid points in H17 is

replacedwith a 53 5 stencil. This contributes to reduced

sampling variability at each grid point and smoother

spatial maps of ensemble probabilities, especially if the

technique is applied to generate probabilistic forecasts

from a deterministic prediction. As a consequence of

this and the more sophisticated dressing procedure in

the subsequent step that provides some noise reduction,

the Savitzky–Golay smoothing is omitted.

4) Formation of a postprocessed forecast CDF through

the summation of objectively weighted Gaussian

dressing CDFs, as opposed to the H17 algorithm of

adding one realization of random noise to each

quantile-mapped member and forming probabilities

from ensemble relative frequency.

5) Determination of the objective weights in step 4 with

‘‘closest-member histograms.’’

6) When multimodel ensemble probabilities are desired,

the final product is generated from a weighted com-

bination of the single-model postprocessed PQPFs.

We now describe each of the algorithm revisions in

more detail.

1) INDEPENDENT PROCESSING OF EACH MODEL

The first algorithmic revision is straightforward; each

prediction system is processed independently.

2) CHANGES TO THE QUANTILE-MAPPING

PROCEDURE

The second revision is to fit parametric forecast and

analyzed CDFs to be used in the quantile mapping, as

opposed to the empirical CDFs used by H17. Use of

parametric instead of empirical CDFs saves much disk

storage of the training data. Three CDF parameters are

estimated: a fraction zero (FZ) and the shape a and scale

b of a Gamma distribution for positive precipitation

amounts. These parameters are fit separately for ana-

lyzed and forecast data. The parameters are estimated

individually for each grid point using the data from that

grid point and from the supplemental locations using the

previous 60 days of forecasts and analyses. Assume we

havem samples to estimate the parameters of a variable

y, which could be the quantile-mapped ensemble fore-

cast information or analyzed information for a particular

grid point. Define an indicator function I for whether the

ith of the m samples of y is greater than zero:

I(i)5

�
0, if y

i
5 0

1, if y
i
. 0

. (1)

Then, the estimated fraction zero parameter F̂Z is esti-

mated from the relative frequency of zeros in the sample:

F̂Z5 12
�
m

i51

I(i)

m
. (2)

Suppose from the original m samples of y, we have a

set of n remaining samples with positive precipitation

amounts, which we denote as y1. For samples with

nonzero precipitation, a and b are estimated using the

method of maximum likelihood and the Thom (1958)

estimator as described by Wilks (2011, section 4.4.3).

The sample statistic D is calculated as

D5 ln(y1)2
1

n
�
n

i51

ln(y1i )5 ln

�
1

n
�
n

i51

y1i

�
2

1

n
�
n

i51

ln(y1i ) ,

(3)

where the overbar denotes an arithmetic average. The

appealing characteristic of estimating CDFs with a

parametric distribution is that minimal storage is re-

quired, so the parameters can be estimated rapidly. For

each of the preceding 60days and each grid point (in-

cluding data from the supplemental locations), we tally

m, n, �n

i51y
1
i , and �

n

i51 ln(y
1
i ). Using this, we can sum

the appropriate information over the 60 training days,

generate the D statistic from Eq. (3), and then estimate

fitted parameters F̂Z, â, and b̂:

â5 11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 4D/3

p

4D
, (4)

and

b̂5 y1/â . (5)
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Quantile mapping in most circumstances then proceeds

as described by H17’s Eqs. (8) and (9). However, one

finalmodification has beenmade to the quantile-mapping

procedure. Suppose the precipitation forecast for a par-

ticular grid point is unusually large relative to that point’s

climatology as expressed by the forecast CDF. In such a

circumstance, we may not have sufficient trust that the

tails of the fitted gamma distributions and the resulting

mapping functions are adequate. In this case, we

use a slight modification of the procedure described by

Scheuerer and Hamill (2015, their appendix A). Under

that procedure, if the nonexceedance probability of to-

day’s forecast relative forecast’s climatological CDF

exceeds 0.9, a regression slope correction b is applied to

estimate the quantile-mapped values. Let xfi be the ith

member’s raw forecast amount, and let [qf
0:90, . . . , q

f
0:99]

and [qa
0:90, . . . , q

a
0:99] represent vectors of the quantiles

associated with the 90th–99th quantiles of the forecast

and analyzed distribution every 1%. The ith quantile-

mapped forecast ~xi
f then is

~xf
i 5

8<
:

qa
0.90 1 b (xf

i 2 q
f
0.90) if q

f
0.90 # x

f
i , q

f
0.99

qa
0.90 1 b (qf

0.99 2 q
f
0.90)1 (xf

i 2 q
f
0.99) if x

f
i $ q

f
0.99

. (6)

In other words, if the forecast is between the 90th

and 99th percentiles of the forecast CDF, a straight-

forward regression slope correction is applied fol-

lowing Scheuerer and Hamill (2015). If the forecast

is beyond the 99th percentile, the difference be-

tween today’s forecast and the 99th percentile of

the forecast distribution is also added. This permits

extremely large forecast values to retain some of

their anomalous nature but to retain a bias correc-

tion estimated for data between the 90th and 99th

percentiles.

3) USE OF 5 3 5 STENCIL OF SURROUNDING

GRID POINTS

We now consider the postprocessing of a particular

single ensemble prediction system at one grid point in

the domain of interest and at one particular lead time.

To deal with systematic position errors and synthetically

increase the sample size, the H17 procedure enlarged

the ensemble by quantile mapping a surrounding 3 3 3

stencil of grid points, using the CDF unique to each

stencil point and the analysis CDF at the central point of

interest. In the revised procedure, a 5 3 5 stencil is

used, providing a larger sample. For subsequent testing

against the previous version of the algorithm, the dis-

tance between grid points in the H17 3 3 3 stencil is

double that of the current 5 3 5 stencil, which ensures

that the 33 3 and 53 5 stencils cover the same area, just

with a denser grid for the 5 3 5 stencil. The spacing

between grid points in the stencil depends on the fore-

cast lead time, increasing linearly from 1/88 grid for112-h

lead forecasts to 5/88 at 1156–168 h. The increase of

spacing with lead time is an ad hoc way of dealing with

the potential increase of position biases in ensemble

systemswith increasing lead time (Scheuerer andHamill

2015, Fig. 14).

4) DRESSING WITH WEIGHTED CDFS

The revised dressing procedure at a particular grid

point and lead time is now described. The vector ~xf

represents sorted, quantile-mapped, 25-fold enlarged

ensemble members at a grid point of interest:

~xf 5 [~xf(1), . . . , ~x
f

(n325)] . (7)

These provide estimates of the random variable x, the

unknown true precipitation amount.

The index subscript (i) in Eq. (7) now denotes

the ith-sorted member. The mean of the quantile-

mapped and enlarged forecasts will also be used to

later set the value of an index in the closest-member

histogram:

~xf5
1

n3 25
�
n325

(i)51

~xf(i) . (8)

The CDF F(x) of postprocessed precipitation amount

is estimated through a weighted combination of

Gaussian-distributed dressing cumulative probability

distributions associated with each sorted ensemble

member:

F(x)5 �
n325

(i)51

h
(i)
3 F

N

2
4(x2 ~xf

(i))
2

2s2
(i)

3
5 , (9)

where h(i) is the ‘‘closest-member histogram’’ weight

associated with the ith-sorted member, described in

more detail later. Parameter FN[.] in Eq. (9) is the

Gaussian-distributed dressing CDF for the ith-sorted

member, a distribution whose associated PDF is cen-

tered on the sorted, quantile-mapped member with as-

sociated standard deviation
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s
(i)
5

8>><
>>:
0, if ~xf

(i) 5 0

0:15 1
~xf

(i)

0:15
, if ~xf

(i) . 0

. (10)

For amounts greater than zero, standard devia-

tion starts at an initially small nonzero value and

increases linearly with precipitation amount. The

chosen standard deviation of the distribution is ad-

mittedly ad hoc, but through extensive testing, in-

cluding the objective fitting of Gamma dressing

distributions (not shown), it was determined that the

results are not very sensitive to the choice of dressing

distribution parameters for the ensemble systems

examined here.

5) ESTIMATION OF THE CLOSEST-MEMBER

HISTOGRAM WEIGHTS

Consider now how the closest-member histograms

are estimated. The vector of closest-member histogram

weights

h 5 [h
(1)
, . . . ,h

(n325)
] (11)

are estimated directly from quantile-mapped training

data during the past 60days, accumulated over the

CONUS. To permit a dependence of the closest-member

histogramweights on precipitation amount, the ith-sorted

member’s weight is estimated as a function of the rank of

the sorted member and an index M(~xf ) of the quantile-

mapped mean precipitation amount:

h
(i)
5H[(i),M(~xf )] , (12)

where

M(~xf )5

8>>>><
>>>>:

1, if ~xf # 0:01mm

2, if 0:01 # ~xf ,2:0mm

3, if 2:0 # ~xf , 6:0mm

4, if 6:0mm # ~xf

. (13)

In the case where M(~xf )5 1, the weights for each

member are set equally to 1/(n3 25). WhenM(~xf ). 1,

the statistics are estimated objectively from the

closest-member histogram statistics, which are strat-

ified by the quantile-mapped ensemble-mean amount.

When tallying closest-member histogram statistics,

should one or more quantile-mapped members

and the analyzed state have the same value such as

zero, the closest-member rank is assigned ran-

domly between the sorted members with equal

values.

Figure 1 provides an example of the closest-

member histogram statistics, in this case for the

training data for quantile-mapped and 5 3 5 stencil-

enlarged ensembles for 136–48-h forecasts with an

initial date of 0000 UTC 1 May 2016. To permit three

prediction systems with ensembles of different num-

bers of members to be plotted on the same axis, the

closest-member histogram abscissa is scaled 0 to 1 for

each system. The ECMWF system’s histograms are

displaced below the CMC and NCEP ensembles be-

cause of the larger number of ensemble members in

the ECMWF system and lower expected fraction

per bin.

The closest-member histograms illustrate the poten-

tial advantage to be gained by weighting the members

based on both the members’ sorted rank (the abscissa)

and the mean precipitation amount (the panel in Fig. 1).

No matter the precipitation amount, the sorted mem-

bers with extreme ranks of each system were gener-

ally more likely to be the closest member, to varying

degrees. For heavy precipitation in Fig. 1c, the lowest-

ranked member in the NCEP ensemble was ;8.4%

likely to be the closest member, which was approxi-

mately two orders of magnitude more likely than some

of the upper-ranked members. The shapes of the his-

tograms also varied substantially with the mean pre-

cipitation amount. The largest weights (histogram

values) with light mean precipitation in Fig. 1a

were applied to the top-ranked members, whereas

the largest weights with heavy mean precipitation

in Fig. 1c were applied to the lowest-ranked mem-

bers. This indicates a general tendency of the quantile-

mapped forecasts to underforecast precipitation

amounts with light-mean-forecast precipitation and to

overforecast precipitation amounts with heavy-mean-

forecast precipitation, though it is noted that stratifica-

tion of data can sometimes lead to misleading results

(Siegert et al. 2012). The NCEP system had more

weight for outlying members, even after account-

ing for differences in ensemble size. This indicates

overconfidence (lack of spread) in the NCEP en-

semble, even after quantile mapping and the 25-fold

expansion. General characteristics of these closest-

member histograms were similar at other leads,

though the greater weight at the extreme ranks was

typically more severe for shorter-lead forecasts than

for longer-lead ones (not shown); though shorter-

lead forecasts had lower ensemble-mean errors, they

were also more overconfident. This may be a conse-

quence of model spinup issues or suboptimal en-

semble design.

Extensive testing was performed to develop a

method for objectively estimating the characteristics
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of Gamma-distributed dressing distributions. Upon

comparisonwithmuch simpler, ad hocGaussian-distributed

dressing distributions, only small differences in skill

and reliability were found. Accordingly, the algorithm

here uses the simpler Gaussian dressing distributions,

and a detailed description of the method for generating

objective Gamma-distributed dressing distributions is

not included here.

FIG. 1. Closest-member histograms for136–48-h quantile-mapped precipitation forecasts valid for

initial timeof 0000UTC1May2016.Theabscissa is the fractionbetween the lowest andhighest ranks.

The three panels are for indices ofM, conditioned on the mean precipitation amount, from lighter to

heavier. The fractional values associated with the lowest and highest ranks are indicated by the text in

the legend. Interior ranks of the histograms were smoothed with a Savitzky–Golay smoother using

a window length of nine ranks and fitting the coefficients of a second-order polynomial.
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6) ESTIMATION OF MULTIMODEL ENSEMBLE

PROBABILITIES

The final algorithmic change relative toH17 is that the

final estimate of the probabilities of exceeding an event

threshold are generated from a weighted linear combi-

nation of the event probabilities estimated from each

prediction system. The weights that are applied in the

later figures of this paper are somewhat arbitrary, but

systems with larger postprocessed skill receive higher

weights.

c. The censored, shifted Gamma distribution method
of postprocessing

The probabilistic forecasts obtained with the new

weighted kernel dressing approach described above are

compared with those obtained with the heteroscedastic

regression approach based on censored, shifted Gamma

distributions (CSGDs) proposed by Scheuerer and

Hamill (2015). The CSGDs define a three-parameter

distribution family that is able to model the occurrence

and amount of precipitation simultaneously. Unlike the

kernel dressingmethodology described above, theCSGD

approach uses three statistics (ensemble probability of

precipitation, ensemble mean, and ensemble-mean ab-

solute difference) to summarize the information in the

quantile-mapped ensemble rather than the individual

ensemble member forecasts. Nonlinear regression equa-

tions link the predictive CSGD parameters to the en-

semble statistics, and the parameterization is chosen in

such a way that the calibrated forecast distribution con-

verges to the climatological distribution of the analyzed

precipitation amounts as the skill of the underlying NWP

forecasts tends to zero.

With large datasets and locally fitted CSGD coeffi-

cients, this approach was demonstrated to yield reliable

and highly skillful probabilistic forecasts. A recent study

(Zhang et al. 2017) confirmed these conclusions and

found that the CSGD approach compares favorably with

the mixed-type meta-Gaussian distribution (MMGD)

model, which has been an integral part of the National

Weather Service’s Hydrologic Ensemble Forecast Sys-

tem. In all studies where the CSGDmethod was tested so

far, however, a reforecast dataset was available and

provided a sufficiently large training sample for locally

fitting the CSGDmodel parameters. In the present setup,

where the training sample size is limited, a number of

modifications of the original approach described by

Scheuerer and Hamill (2015) are required to prevent

overfitting (see, e.g., their Fig. 13, for an illustration of the

adverse effects of overfitting). As applied here, the

CSGD significantly reduces the total number of model

parameters that need to be estimated by assuming the

regression parameters are constant across the CONUS

domain. A spatially varying predictor of NWPmodel skill

is introduced in addition to the spatially varying clima-

tology parameters to address local forecast characteris-

tics. Technical details about these modifications are

provided in the online supplemental material to this pa-

per. Several variants of this chosen algorithm were also

tried; descriptions of these alternatives are omitted, given

their somewhat reduced skill and reliability.

4. Verification of probabilistic forecasts

Figures 2 and 3 show the skill of constituent center’s

predictions for the POP and 10-mm threshold, re-

spectively, as modifications are sequentially added to

the base H17 algorithm for each model. Table 1 de-

scribes the various experiments that are plotted in these

figures and the abbreviations used in the figure captions.

Both figures illustrate that NCEP raw guidance was less

skillful than either CMC or ECMWF guidance and is

improved more through the postprocessing. Whereas

for POP, at shorter leads the CMC guidance was more

skillful than ECMWF, at longer leads and for the 10-mm

threshold, ECMWF guidance wasmore skillful. Figure 2

also shows the profound impact of quantile mapping of

light precipitation with the surrounding stencil of grid

points, with especially pronounced impact for the NCEP

system and the ECMWF system at the earlier forecast

leads. In comparison, the other improvements, such as

adding dressing and closest-histogram weighting, had

much smaller impact for POP than the quantile map-

ping. They had more of an impact for the more poorly

performing NCEP system and virtually no impact with

the weighedmultimodel ensemble. However, examining

skill for the $10mm 12h21 event in Fig. 3, we see the

positive impact of the closest-histogram weighting,

which addresses remaining issues of forecast over-

confidence. At these higher amounts, quantile mapping

had a smaller impact relative to the closest-member

histogram rank-based weighting. Apparently, both

quantile mapping and the closest-histogram weighting

were necessary to achieve significant skill improvements

simultaneously for both smaller and larger events. The

primary deficiency at light precipitation amounts was

apparently bias, addressed through the quantile map-

ping, and the primary deficiency of forecasts of heavier

amounts was overconfidence, addressed through the

closest-histogram rank weighting.

What if the data from one prediction system were not

available, perhaps due to a communications outage? In

this case, predictions would be made through a linear

combination of the remaining data. Figure 4 shows the

skill of forecasts when all of the systems were available
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and also when one system was missing. Confidence in-

tervals are not presented, given the large number of

possible permutations. The relative weights assigned

were based roughly on the forecast accuracy, and weights

are indicated in the figure legend. For POP, if ECMWF

data were missing, there was a degradation of skill

amounting to roughly 1/2 day of forecast lost lead time.

The loss of data from either the CMC or the NCEP sys-

temwas relatively unimportant whenECMWFdata were

available. For the $10mm 12h21 event, forecasts again

were most profoundly affected by the loss of ECMWF

data, and forecasts were actually improved in skill very

slightly when NCEP data are not used. This suggests that

after postprocessing, theNCEPdata didnot providemuch

information that was independent of the information al-

ready provided by the postprocessed CMC and ECMWF

systems or that was much less accurate. With a major

overhaul of the NCEP prediction systems in 2018/19 and

incorporation of a new dynamical core, one should not

expect this characteristic to continue indefinitely.

Figures 5 and 6 provide comparison against another

reference standard, theCSGDmethodology of Scheuerer

and Hamill (2015). In most situations, the quantile map-

ping and closest-histogram weighted dressing algorithm

FIG. 2. BSSs for exceeding the POP threshold for various postprocessing configurations and as a function of lead time. (a) NCEP,

(b) CMC, (c) ECMWF, and (d) multimodel ensemble with 20% weight for NCEP, 30% weight for CMC, and 50% weight for ECMWF.

The experiment configurations are described in Table 1. (e)–(g) The absolute difference between the 50th and 95th percentiles of a block

bootstrap distribution (i.e., a confidence interval for the hypothesis test of each forecast modification relative to the step before). Dots

indicate that the difference was statistically significant at the 5% level.
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described here outperformed the CSGD methodology.

One notable exception was that the performance of

NCEP’s $10mm 12h21 forecasts at longer leads was

improved through the use of the CSGD algorithm. We

conjecture that the overall mediocre performance of the

CSGD method in the present setup was due to the

simplifications that were necessary to address the limited

training data. By including local climatological and skill

information in the CSGD regression equations, we tried

to account for local characteristics and make the as-

sumption of spatially constant regression parameters

more justifiable. Still, for a domain like the CONUS that

FIG. 3. As in Fig. 2, but for the .10mm 12 h21 threshold.

TABLE 1. Experiment names for various permutations of quantile mapping and dressing algorithm.

Experiment name

Quantile

mapping? 3 3 3 stencil? 5 3 5 stencil?

Closest-histogram

weighting? Dressing?

raw No No No No No

q-m,3 3 3,noWt,noD Yes Yes No No No

q-m,3 3 3,noWt,D Yes Yes No No Yes

q-m,5 3 5,noWt,D Yes No Yes No Yes

q-m,5 3 5,Wt,D Yes No Yes Yes No
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contains diverse climatologies and different predictabil-

ity, this simplification appears to have significant adverse

effects on the performance of the resulting forecasts. We

conjecture that the improved performance of the CSGD

approach, when applied to NCEP’s higher precipitation

amount forecasts and longer lead time, is explainedby the

desirable convergence of CSGD forecasts to the clima-

tological distributions in situations with little predictive

skill, as explained by Scheuerer and Hamill (2015).

We turn now to an examination of the reliability di-

agrams for the forecasts, with POP data shown in Fig. 7

and $10mm 12h21 data in Fig. 8. Figures 7a and 8a

show the reliability and frequency of usage for each in-

dividual system’s raw ensemble and for the raw multi-

model ensemble. All forecast systems were quite

unreliable; for POP, the CMC system had the greatest

reliability, but its forecasts were not as sharp at high

probabilities, compared to the ECMWF system, so

ECMWF skills were higher.

Raw ECMWF usage frequencies exhibit a sawtooth

pattern that the other systems did not. Why is this? The

reliability diagram assigns a range of probabilities to a

discrete bin number. For example, the forecast percent

probabilities [0, 2.5), [2.5, 7.5), and [7.5–12.5) are as-

signed to bins 1, 2, and 3. Here the ‘‘[’’ indicates that the

lower bound is included, and ‘‘)’’ indicates that the up-

per bound is excluded. With its 50 members, ECMWF

probabilities are 0/50, 1/50, 2/50, and so forth. By in-

spection, one can see that the 2/50 and 3/50 (two possi-

bilities) are assigned to the second bin, but 4/50, 5/50,

and 6/50 (three possibilities) are assigned to the third

bin. This oscillation of the number of possible outcomes

FIG. 4. Weighted BSSs for postprocessed forecast skill for the q-m, 5 3 5,Wt,D experiment (see Table 1) but

excluding one of the ensemble prediction centers. (a) POP (.0.254mm 12 h21) threshold and (b) .10mm 12 h21

threshold. Percentage weights for the multimodel combination are indicated in the legend, where N5NCEP, C5
CMC, and E 5 ECMWF.
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assigned to a particular bin explains ECMWF’s saw-

tooth frequency-of-usage pattern.

Figures 7b and 8b show the effects of quantile map-

ping using the older 3 3 3 stencil of points and no

dressing. Forecasts were made much more reliable for

POP through the quantile mapping and only slightly

more reliable at $10mm 12h21, which was consistent

with the greater skill improvement for POP than

for $10mm 12h21 previously shown in Figs. 2 and 3.

There was still some remaining unreliability of the

forecasts after quantile mapping, especially at $10mm.

Reliability and skill were only slightly improved through

the use of dressing (Figs. 7c, 8c) and the use of the 53 5

stencil (Figs. 7d, 8d). Only after the application of

the closest-histogram weighting (Figs. 7e, 8e) were

reliabilities significantly improved further. There were

still some issues with unreliability at high probabilities,

but it is apparent from the frequency of usage histo-

grams that these high probabilities were issued quite

infrequently; at lower probabilities that were much

more common, the forecasts were quite reliable.

Figure 7e shows an odd characteristic of the

postprocessed NCEP guidance of POP after the closest-

histogram weighting. Before (Fig. 7d), forecast proba-

bilities in the range of 2.5%–7.5% were issued slightly

less than 1% of the time. After the closest-histogram

weighting, forecasts in this range were issued much less

frequently, roughly two times in 1000. Why did this

happen? After the 5 3 5 stencil quantile mapping, the

NCEP ensemble is expanded in size to 20 3 25 5 500

FIG. 5. Comparison of POP postprocessed forecast skill for the q-m, 53 5,Wt,D experiment vs the CSGDmethodology. (a) NCEP, (b) CMC,

(c) ECMWF, and (d) multimodel ensemble. (e)–(h) Confidence intervals and significance following the description in the Fig. 2 caption.
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members. Neglecting the effects of dressing, forecasts

between 2.5% and 7.5% probability would occur with

13–37 members of 500 exceeding the POP threshold.

Let us assume that these low probabilities are associated

with a relatively low ensemble-mean precipitation amount,

between 0.01 and 2mm, indicating that the closest-

histogram weighting would be associated with the data

presented in Fig. 1a. From inspection, we see there that the

highest-ranking forecast member will have its probability

changed from 1/500 to 0.047. That is, when the quantile-

mapped forecasts are in the range of 2.5%–7.5%, typically

another 5%probability is added to these forecasts through

the closest-histogram weighting, dramatically reducing the

fraction of situations when forecasts of this probability

range are issued. CMC and ECMWF do not exhibit this

problem as much because their highest-sorted member

has a much lower probability of being the closest member,

again shown in Fig. 1a.

The reliability diagrams in Fig. 7f reinforce the pre-

vious discussion about the limitations of the modified

CSGD approach. The dramatic reduction in the overall

degrees of freedom entailed by the assumption of spa-

tially constant regression coefficients made it difficult to

obtain high-quality regression equations valid across all

grid points and all thresholds. The general reliability

reported in previous applications of the CSGD method,

where the regression parameters were specific to each

analysis grid point, is regrettably no longer valid

under the assumption of spatially constant regression

coefficients.

FIG. 6. As in Fig. 5, but for the .10mm 12 h21 threshold.
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FIG. 7. POP reliability diagrams (left axis label) and logarithmic frequency (right axis label) of forecast usage

for CMC, NCEP, ECMWF, and multimodel ensembles (MME, with 20%NCEP, 30% CMC, and 50% ECMWF

weighting). Data in various panels described in titles.
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FIG. 8. As in Fig. 7, but for the .10mm 12 h21 threshold.
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5. A representative case study

We briefly show a typical case that illustrates the

changes that occur in the major steps from raw guidance

through to quantile-mapped and dressed postprocessed

guidance and finally multimodel combination. For

brevity, we do not show the CSGD forecasts.

The 36–48-h predictions from the NCEP, CMC, and

ECMWF systems are shown in Figs. 9–11, respectively.

In each system, there was a predicted maximum raw

ensemble-mean amount, extending northeast from

Louisiana to roughly western North Carolina, and a

second maximum in the northeast United States.

Smaller forecast mean precipitation amounts occurred

across the mountains of the western United States.

Smaller-scale details differed between the prediction

systems. Considering the NCEP raw POP forecasts in

Fig. 9b, we see a large area of red indicating probabil-

ities near 1.0 and a general blocky pattern due in part to

the limited resolution of the forecast model and storage

of data at reduced resolution in the TIGGE archive.

After the 5 3 5 stencil quantile mapping shown in

Fig. 9c, there was additional terrain-related enhance-

ment of probabilities in the westernUnited States and a

decrease in the area with high POP in the eastern

United States. The closest-histogram weighting and

dressing further depressed high probabilities in the

eastern United States and turned many regions in the

upper Great Plains and the Ohio River valley with

forecasts between 3% and 5% to between 10% and

20%. The enhancement of terrain-related detail and

the desharpening of forecasts can also be seen in

the CMC forecasts (Fig. 10) and ECMWF forecasts

(Fig. 11). After the postprocessing, the three systems’

FIG. 9. NCEP POP forecast guidance for 136–48-h forecasts initialized at 0000 UTC 1 May 2016. (a) Raw ensemble-mean precipitation

amounts; (b) raw ensemble POP forecast; (c) POP after the quantilemapping; and (d) POP after quantilemapping andweighted dressing.
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POP guidances resemble each other much more than

the original raw POP guidance did.

Figure 12a provides the final, weighted multimodel

POP forecast synthesized from 20% NCEP, 30% CMC,

and 50% ECMWF forecast data. As there was some

difference in the positions of probability maxima and

minima among the three systems, there was an addi-

tional slight loss of sharpness in the forecasts. Consid-

ering the verifying analysis in Fig. 12b, nearly every area

with precipitation greater than the POP threshold was

covered by nonzero probabilities, with higher proba-

bilities generally associated with the locations that had

higher verifying precipitation amounts.

To provide a quick glimpse of probabilities at a higher

threshold, Fig. 13 also provides the final, synthesized

weighted multimodel guidance of probabilities of

exceeding the 10-mm threshold. Higher probabilities

were confined to Louisiana, Mississippi, and northern

Alabama. There was somewhat less correspondence be-

tween the areas of higher probability and the locations

exceeding 10mm, though again, in almost all circum-

stances, the locations with greater than 10mm were cov-

ered by nonzero probabilities.

6. Conclusions

This article describes proposed changes to the prob-

abilistic precipitation forecast algorithm that NOAA’s

research arm proposes to transfer to operational use in

the National Weather Service under its National Blend

of Models program. The major algorithmic changes

from those described by H17 are as follows:

1) The separate postprocessing of each prediction sys-

tem’s guidance, followed by the weighted combination

FIG. 10. As in Fig. 9, but for the CMC ensemble.
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of guidance from all available systems. This facilitates

dealing with data delays or outages of the individual

prediction systems used in the National Blend.

2) Changes to the quantile-mapping procedure that is

used to ameliorate biases in the mean forecast state.

In particular, the revised procedure now estimates

the forecast and analyzed CDFs used in quantile

mapping with a fraction zero and a Gamma distribu-

tion for positive amounts. The advantage of this

approach is that much less information needs be

stored relative to the previous procedure where

empirical CDFs were used. The procedure also

runs faster.

3) A revised procedure for the quantile mapping at the

highest precipitation amounts relative to that grid

point’s climatology. This procedure addresses the

limitations of training sample size in populating the

CDFs through the use of a regression approach

when today’s forecast is between the 90th and 99th

percentiles of the forecast CDF. If greater than the

99th percentile, an additional correction is added,

the difference of today’s forecast from the 99th

percentile.

4) The variable weighting of sorted ensemble members

according to closest-member histogram statistics,

defined through training data of forecasts across

the domain during the previous 60 days.

The results presented also include ECMWF ensemble

forecast data in this comparison, following a negotiated

agreement between NOAA and ECMWF to permit the

ECMWF data to be used in the National Blend. The

ECMWF forecast system, consistent with prior results,

is much more skillful than the other systems in most

FIG. 11. As in Fig. 9, but for the ECMWF ensemble.
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circumstances and adds substantial skill to the post-

processed guidance.

In general, with the proposed new precipitation

postprocessing algorithm, it was demonstrated that ad-

ditional forecast skill and improved reliability can be

added beyond that demonstrated by H17, particularly

for heavier precipitation events (the .10mm 12h21

results were shown here). These system improvements

suggest that with the use of this algorithm, the National

Blend probabilistic precipitation forecasts will be of

sufficient skill and reliability that they can and should be

disseminated more widely. Currently, National Blend

guidance does not include fully probabilistic quantita-

tive precipitation forecast guidance, only the probability

of nonzero precipitation (POP).

The authors of this article intend to work with National

Weather Service colleagues to implement these algorithms

in future versions of the National Blend. Still, there are

many avenues for continued improvement of the system.

One area of current research is the development of meth-

odologies for creating synthetic, high-resolution ensemble

forecasts that are consistent with the high-resolution

FIG. 12. (a) Multimodel ensemble POP for 136–48-h forecast initialized at 0000 UTC 12 May 2016. (b) Corresponding verifying

precipitation analysis for accumulated precipitation for the 12 h ending 0000 UTC 14 May 2016. All areas inside the black contour in

(b) verify the event as having occurred.

FIG. 13. As in Fig. 12, but for the .10mm 12 h21 event. All areas inside the black contour in (b) verify the event as having occurred.
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postprocessed precipitation forecast guidance created here.

Such ensembles with realistic space and time variability are

commonly necessary as forcings to ensemble hydrologic

prediction systems. We have explored (Scheuerer et al.

2017; Scheuerer and Hamill 2018) approaches suitable for

small basins, and we intend to explore methodologies suit-

able for large basins in the months and years to come.

In the future, some prediction systems, in particular

ECMWF and the NCEP global ensemble, will be ac-

companied by large training datasets. A future National

Blend precipitation postprocessing algorithm should be

designed to leverage these larger training datasets to

improve product quality, and we intend to work with

National Weather Service partners on such algorithms

in the coming years.
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